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Since the previous review of this system by [1992Gho],
several thermodynamic descriptions have become available
[1998Lia, 2002Mie, 2003Bor], with the last study reporting
in addition new experimental measurements. The descrip-
tion of [1998Lia] is the most detailed treatment available for
Al-rich alloys.

Binary Systems

The Al-Cu phase diagram [1993Sau, Massalski2] depicts
a number of intermediate phases: CuAl2 (C16-type tetra-
gonal, denoted h), CuAl (monoclinic, g), Cu5Al4(LT)
(monoclinic, f), e2 (NiAs-type hexagonal), e1(bcc), Cu3Al2
(rhombohedral, d), Cu9Al4(HT) (c0), Cu9Al4(LT) (D83-type
cubic, c1), and Cu3Al (bcc, b). In the above, HT = high-
temperature and LT = low-temperature. The Al-Zn phase
diagram [1993Che] contains no intermediate phases. A
miscibility gap occurs in the Al-based face centered cubic
(fcc) solid solution below 351 �C, where the fcc phase splits
into (Al)� and (Al)’’. The monotectoid reaction (Al)’’ M

(Al)� + (Zn) follows at 277 �C. The Cu-Zn phase diagram
[1993Kow, Massalski2] is characterized by a series of
peritectic reactions, which yield CuZn (b, bcc), Cu5Zn8
(c, D82-type cubic), CuZn3 (d, B2, CsCl-type cubic), and
CuZn4 (e, cph). Zn (cph) has an axial ratio c/a much larger
than e and the two coexisting cph phases are modeled
separately with different interaction parameters [1993Kow].
The b phase orders to a CsCl-type B2 phase (b�) through a
second-order transition below ~460 �C.

Ternary Phases

A ternary phase with rhombohedral symmetry and with
the nominal composition Al4Cu3Zn (denoted s) is known in
this system [Pearson3]. The homogeneity range of s and its
temperature dependence are not clearly defined [1998Lia].
The structurally-related, low-temperature form s� was found
to be stable between 400 �C and room temperature by
[2005Hao]. [1998Lia] omitted s� in their thermodynamic
description.

Fig. 1 Al-Cu-Zn computed liquidus projection [1998Lia]
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Fig. 2 Al-Cu-Zn computed isothermal section at 700 �C [1998Lia]

Fig. 3 Al-Cu-Zn computed isothermal section at 600 �C [1998Liaa]
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Computed Ternary Phase Equilibria

[1998Lia] reexamined the experimental data from the
literature and presented an assessed liquidus projection and
two isothermal sections at 700 and 500 �C, based mainly on
the results of [1932Bau, 1941Kos1,1941Kos2, 1960Arn]. In
addition to the above assessed diagrams, the activity
measurements of [1985Seb] for Al in Cu-lean liquid alloys
and of [1986Sug] for Zn in Cu-rich liquid alloys were used
in the optimization. In the thermodynamic modeling, the

liquid, fcc, cph (Zn), cph (e) and bcc phases were treated as
disordered solutions. The c1)Cu9Al4 and c)Cu5Zn8 form a
continuous solid solution (denoted c), which was simplified
to a disordered bcc solution in the thermodynamic descrip-
tion by [1998Lia]. The s phase was modeled as a
semistoichiometric phase with the formula (Al,Cu)0.1Al0.4
Cu0.4Zn0.1. The c0 phase was described by a three sublattice
model. The binary Al-Cu compounds h, g, f, d, and e were
assumed to have no ternary solubility. The binary descrip-
tions of [1993Sau] (Al-Cu), [1993Che] (Al-Zn) and

Fig. 4 Al-Cu-Zn computed isothermal section at 500 �C [1998Lia]

(a) (b)

Fig. 5 Al-Cu-Zn computed vertical sections at (a) 20 mass% Cu and (b) 20 mass% Zn [1998Lia]
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[1993Kow] (Cu-Zn) were accepted, except for the remod-
eling of the c1)c continuous solid solution. The remodeled
(hypothetical) parameters were such as to yield the correct
Al-Cu and Cu-Zn phase diagrams, as well as the same
Gibbs energies of the binary c phases in their stable regions.
The computed liquidus projection and three isothermal
sections at 700, 600 and 500 �C from [1998Lia] are shown
in Fig. 1-4. [1998Lia] also computed three vertical sections
at 20 mass% Cu, 20 mass% Zn and 40 mass% Zn
respectively. The first two of these are shown in Fig. 5.

[2002Mie] developed a thermodynamic description of
this system valid for Cu-rich alloys. The reviewed exper-
imental liquidus projection from [1992Gho], the experi-

mental isothermal sections of [1932Bau] and the activity
measurements of Zn in Cu-rich liquid alloys from
[1986Sug] were used in the optimization. The descriptions
of the three binaries were taken from the literature. The
description by [1998Lia] of the ternary c phase as a
disordered bcc solution was retained. Due to the greater
weight given to the Cu-rich experimental data, the agree-
ment in the Cu-rich region was found to be somewhat better
than that obtained by [1998Lia]. The computed results of
[2002Mie] for Cu-rich alloys include a liquidus projection,
three vertical sections at 2, 4 and 6 mass% Al and five
isothermal sections at 800, 700, 600, 515 and 475 �C. The
isothermal section at 475 �C is shown in Fig. 6.

With starting metals of 99.47% Al, 99.94% Cu and
99.75% Zn, [2003Bor] induction-melted 11 ternary alloys
containing up to 5 mass% Al and homogenized them
between 720 and 950 �C. The compositions of the co-
existing phases were measured with a scanning electron
microscope equipped with energy dispersive spectrometer
(SEM-EDS). In the thermodynamic calculations, the binary
descriptions used by [1998Lia] were adopted. The ternary
parameters for liquid and fcc phases were re-optimized
taking the new experimental results into account. The
computed isothermal sections for Cu-rich alloys at 800, 750
and 720 �C shown in Fig. 7 agree well with the new
experimental data. They were also found to be in agreement
with the calculated sections of [1998Lia].

Using starting metals of purity of ‡ 99.9 mass%,
[2003Vil] induction melted 10 ternary alloys with Al
contents up to 3.68 mass%. The final anneal was for 24 h
between 650 and 350 �C. The compositions of the coexis-
ting (fcc + bcc) phases were measured by the electron probe
microanalyzer. The results were compared with the vertical
sections at 1 and 2 mass% Al determined by [1932Bau].
They show that, at 1 mass% Al, the boundaries of the
(fcc + bcc) two-phase region are shifted by about 1 mass%
to the Zn-rich side, and at 2 mass% Al, they are shifted by
about 1 mass% to the Cu-rich side.

Recently, Hao et al [2002Hao, 2004Che, 2005Hao]
studied the low temperature equilibrium in Cu-lean alloys.

(a) (b) (c)

Fig. 7 Al-Cu-Zn computed isothermal sections at (a) 800, (b) 750, and (c) 720 �C. Experimental tie-lines are shown [2003Bor]

Fig. 6 Al-Cu-Zn computed isothermal section at 475 �C
[2002Mie]
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[2005Hao] prepared 14 ternary alloys, which were annealed
at 400 �C and cooled at very slow cooling rates of 10-20 �C
per day. The co-existing compositions were measured by the
electron probe microanalyzer. The room temperature
(20 �C) section constructed by [2005Hao] is shown in
Fig. 8. The ternary phase s� is stable at room temperature
and forms tie-lines with (Al) and (Zn). The effect of copper
on the miscibility gap in the fcc phase of the Al-Zn system is
illustrated schematically in Fig. 9 [2005Hao]. Copper
stabilizes the Al-Zn gap to higher temperatures. The gap
slants towards the Al-rich side and ends up at the metastable
miscibility gap of the Al-Cu system. Also, the measured tie-
lines of [2005Hao] at 320 and 360 �C show that Cu resides
preferentially in the Zn-rich fcc phase.
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